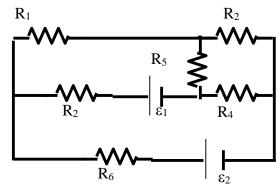
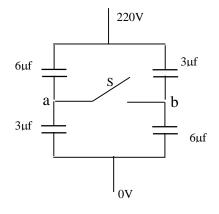

TALLER 2. FÍSICA ELÉCTRICA

- 1. En los extremos de un cable de cobre de 2 m. de largo y diámetro 1 mm se coloca una diferencia de potencial $\Delta V = 0.1~V$. Calcular la corriente I que fluye en el cable y el número de electrones que cruzan la sección transversal A en un segundo (resistividad del cobre $\rho = 1,7.10^{-8}~\Omega m$ a $20^{\circ}C$).
- 2. Considere el circuito de la figura en donde se tiene una diferencia de potencial $\Delta V=35V$ obtenida de una fuente o pila. Calcule la caída de potencial en cada resistor y la corriente que por cada uno circula.

Valores de las resistencias:

$$R_1 = 1 \Omega$$
, $R_2 = 2 \Omega$, $R_3 = 3 \Omega$, $R_4 = 4 \Omega$ y $R_5 = 5 \Omega$.



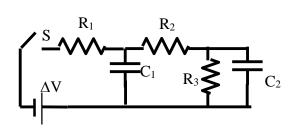

3. En el siguiente circuito, determinar la corriente en cada resistor. Si los valores de las resistencias y de las fuentes son:

$$R_1 = R_5 = R_6 = 3\Omega;$$

 $4\Omega;$ $R_4 = \Omega$

$$R_2 = 2\Omega; \quad R_3 =$$

$$\varepsilon_1 = 5V$$
; $\varepsilon_2 = 10V$



- 4. Los capacitares de la figura están inicialmente descargados y están conectador a una fuente de 220v. Determinar la diferencia de potencial y la carga de cada condensador.
- a) Cuando el swith está abierto.
- b) Cuando está cerrado.

- 5. Para el circuito de la figura determinar:
- a. La corriente en cada resistor en el instante después de cerrar el interruptor (t=0).
- b. La corriente en cada resistor después de un largo tiempo.
- c. La carga final de los condensadores.

$$R_1 = R_2 = R_3 = 100\Omega$$

 $C_1 = C_2 = 20\mu F$

