Portada del sitio > Chemistry exercises > Chemical reactions > Calculation of equilibrium constants and degree of dissociation of N2O4 (8413)
Calculation of equilibrium constants and degree of dissociation of N2O4 (8413)
Viernes 14 de marzo de 2025, por
At and 1 atm,
dissociates into
by
according to the following equilibrium:
Calculate:
a) The values of the equilibrium constants and
at this temperature.
b) The percentage of dissociation at and a total pressure of 0.1 atm.
Data: .
The first step is to determine the number of moles of each substance at equilibrium, based on the initial moles and the degree of dissociation ():
Since the degree of dissociation is

The total number of moles at equilibrium is the sum of all species:
![n_T = 0.8n_0 + 0.4n_0\ \to\ \color[RGB]{2,112,20}{\bm{n_0 = 1.2n_0}} n_T = 0.8n_0 + 0.4n_0\ \to\ \color[RGB]{2,112,20}{\bm{n_0 = 1.2n_0}}](local/cache-vignettes/L258xH16/8e1e3b96379a36aa0d2aec01d4a3f66b-edf29.png?1732972180)
Next, calculate the mole fraction for each substance:
![x_{\ce{N2O4}} = \frac{0.8\cancel{n_0}}{1.2\cancel{n_0}} = \color[RGB]{0,112,192}{\bm{\frac{2}{3}}} x_{\ce{N2O4}} = \frac{0.8\cancel{n_0}}{1.2\cancel{n_0}} = \color[RGB]{0,112,192}{\bm{\frac{2}{3}}}](local/cache-vignettes/L135xH39/9639dcb8e5266665feaead120115462c-dc8c4.png?1732972180)
![x_{\ce{NO2}} = \frac{0.4\cancel{n_0}}{1.2\cancel{n_0}} = \color[RGB]{0,112,192}{\bm{\frac{1}{3}}} x_{\ce{NO2}} = \frac{0.4\cancel{n_0}}{1.2\cancel{n_0}} = \color[RGB]{0,112,192}{\bm{\frac{1}{3}}}](local/cache-vignettes/L129xH39/c0ea6e6347d34920e7bc4047748a7a92-d545b.png?1732972180)
a) The equilibrium constant in terms of partial pressures is:
![\color[RGB]{2,112,20}{\bm{K_p = \frac{p_{\ce{NO2}}^2}{p_{\ce{N2O4}}}} \color[RGB]{2,112,20}{\bm{K_p = \frac{p_{\ce{NO2}}^2}{p_{\ce{N2O4}}}}](local/cache-vignettes/L95xH43/7bb1a5ae1ada4ae1a36684478625349c-63cc1.png?1732972180)
Substitute the values into this equation to determine the constant:
The equilibrium constant in terms of concentrations is calculated as:
![\color[RGB]{2,112,20}{\bm{K_c = K_p(RT)^{-\Delta n}}} \color[RGB]{2,112,20}{\bm{K_c = K_p(RT)^{-\Delta n}}}](local/cache-vignettes/L143xH20/80977f2607a0b2eeeee8ad9f720e4c5c-4f4b9.png?1732972180)
The change in the number of moles of gas is one, so substitute the values to find the constant:
b) When the total pressure of the system changes to 0.1 amt, the equilibrium shifts to favor greater dissociation of


![\ce{K_p} = \frac{x_{\ce{NO2}}^2\cdot P_T}{x_{\ce{N2O4}}}\ \to\ K_p = \frac{\dfrac{4\cancel{n_0^2}\alpha^2}{\cancel{n_0^2}(1+\alpha)\cancel{^2}}\cdot P_T}{\dfrac{\cancel{n_0}(1-\alpha)}{\cancel{n_0}\cancel{(1+\alpha)}}}\ \to\ \color[RGB]{2,112,20}{\bm{K_c = \frac{4\alpha^2\cdot P_T}{(1-\alpha)(1+\alpha)}}} \ce{K_p} = \frac{x_{\ce{NO2}}^2\cdot P_T}{x_{\ce{N2O4}}}\ \to\ K_p = \frac{\dfrac{4\cancel{n_0^2}\alpha^2}{\cancel{n_0^2}(1+\alpha)\cancel{^2}}\cdot P_T}{\dfrac{\cancel{n_0}(1-\alpha)}{\cancel{n_0}\cancel{(1+\alpha)}}}\ \to\ \color[RGB]{2,112,20}{\bm{K_c = \frac{4\alpha^2\cdot P_T}{(1-\alpha)(1+\alpha)}}}](local/cache-vignettes/L506xH88/a0f881dc56c5467d04858d56f02b1163-426af.png?1732972180)
For simplicity, work with the denominator and substitute to make solving
