P.-S.
The first step is to determine the number of moles of each substance at equilibrium, based on the initial moles and the degree of dissociation (
):

Since the degree of dissociation is

, the moles can be written as:

The total number of moles at equilibrium is the sum of all species:
Next, calculate the mole fraction for each substance:
a) The equilibrium constant in terms of partial pressures is:
Substitute the values into this equation to determine the constant:
![\ce{K_p} = \frac{x_{\ce{NO2}}^2\cdot P_T\cancel{^2}}{x_{\ce{N2O4}}\cdot \cancel{P_T}} = \frac{(\frac{2}{3})^2\cdot 1\ atm}{\frac{1}{3}}\ \to\ \fbox{\color[RGB]{192,0,0}{\bm{K_p = \frac{1}{6}\ atm}}} \ce{K_p} = \frac{x_{\ce{NO2}}^2\cdot P_T\cancel{^2}}{x_{\ce{N2O4}}\cdot \cancel{P_T}} = \frac{(\frac{2}{3})^2\cdot 1\ atm}{\frac{1}{3}}\ \to\ \fbox{\color[RGB]{192,0,0}{\bm{K_p = \frac{1}{6}\ atm}}}](local/cache-vignettes/L369xH46/9ea30ddc8f45f9e83979a2523afb9021-e34cb.png?1732972180)
The equilibrium constant in terms of concentrations is calculated as:
The change in the number of moles of gas is one, so substitute the values to find the constant:
![K_c = \frac{1}{6}\ \cancel{\cancel{atm}}\left(0.082\ \frac{\cancel{atm}\cdot L}{mol\cdot \cancel{K}}\cdot 303\ \cancel{K}\right)^{-1}\ \to\ \fbox{\color[RGB]{192,0,0}{\bm{K_c = 6.68\cdot 10^{-3}\ M}}} K_c = \frac{1}{6}\ \cancel{\cancel{atm}}\left(0.082\ \frac{\cancel{atm}\cdot L}{mol\cdot \cancel{K}}\cdot 303\ \cancel{K}\right)^{-1}\ \to\ \fbox{\color[RGB]{192,0,0}{\bm{K_c = 6.68\cdot 10^{-3}\ M}}}](local/cache-vignettes/L489xH43/f7ff6fd4a9c39b9974d8bbd0dcb23cc0-089a6.png?1732972180)
b) When the total pressure of the system changes to 0.1 amt, the equilibrium shifts to favor greater dissociation of

. The same expression for

holds, and it is used to calculate the new degree of dissociation under these conditions. Be cautious to express the mole fractions in terms of the initial moles:
For simplicity, work with the denominator and substitute to make solving

easier:
![\frac{1}{6} = \frac{0.4\alpha^2}{1-\alpha^2}\ \to\ 0.415 = 1.415\alpha\ \to\ \fbox{\color[RGB]{192,0,0}{\bm{\alpha = 0.54 = 54\%}}} \frac{1}{6} = \frac{0.4\alpha^2}{1-\alpha^2}\ \to\ 0.415 = 1.415\alpha\ \to\ \fbox{\color[RGB]{192,0,0}{\bm{\alpha = 0.54 = 54\%}}}](local/cache-vignettes/L398xH37/4aaf3d54e847786b16b0cd1934b8c589-83323.png?1732972180)