Angular position and velocity of a wheel (7424)

, por F_y_Q

The angular velocity of a bicycle wheel is 5\ rad\cdot s^{-1}, and its angular acceleration is 3\ rad\cdot s^{-2}.

a) What are the angular position and angular velocity at t = 5 s?

b) What are the angular position and angular velocity at t = 5 s, expressed in revolutions?

c) What are the final velocity and displacement of the bicycle at t = 5 s if the tire has a diamater of 1 meter?

P.-S.

a) The equation for angular velocity is:

\color[RGB]{2,112,20}{\bm{\omega= \omega_0 + \alpha\cdot t}}

Using the given values:

\omega = 5\ \frac{rad}{s} + 3\ \frac{rad}{s\cancel{^2}}\cdot 5\ \cancel{s}= \fbox{\color[RGB]{192,0,0}{\bm{20\ rad\cdot s^{-1}}}}


The equation for angular position is:

\color[RGB]{2,112,20}{\bm{\varphi= \omega_0\cdot t + \frac{\alpha}{2}\cdot t^2}}

Using the given values:

\varphi = 5\ \frac{rad}{\cancel{s}}\cdot 5\ \cancel{s} + \frac{3}{2}\ \frac{rad}{\cancel{s^2}}\cdot 5^2\ \cancel{s^2} = \fbox{\color[RGB]{192,0,0}{\bf 63 \ rad}}


b) To convert angular velocity and position to revolutions:

\omega = 20\ \frac{\cancel{rad}}{s}\cdot \frac{1\ rev}{2\pi\ \cancel{rad}} = \fbox{\color[RGB]{192,0,0}{\bm{3.2\ rev\cdot s^{-1}}}}


For angular position:

\varphi = 63\ \cancel{rad}\cdot \frac{1\ rev}{2\pi\ \cancel{rad}} = \fbox{\color[RGB]{192,0,0}{\bf 10 \ rev}}


c) To convert angular quantities into linear quantities, use the wheel radius:

v = \omega\cdot R = 20\ \frac{1}{s}\cdot 0.5\ m = \fbox{\color[RGB]{192,0,0}{\bm{10\ m\cdot s^{-1}}}}


d = \varphi\cdot R = 63\cdot 0.5\ m= \fbox{\color[RGB]{192,0,0}{\bf 32\ m}}


Download the statement and the solution of the problem in EDICO format if you need it.

TogelhokSitus Slot TogelhokWild Bounty Showdownslot new memberLvonline LoginScatter HitamDaftar LvonlineSlot Gacor Hari IniLvonlineScatter HitamKoi GateTOGELHOKToto MacauLucky NekoMahjong Wins 2LvoslotDragon Hatch 2Slot GacorlvonlinetogelhokSBOTOP