Portada del sitio > Bachillerato > Física 2.º Bachillerato > Vectores, Cinemática, Dinámica y Energía (2.º Bach) > Momento de una fuerza aplicada sobre una pieza mecánica (6889)

Momento de una fuerza aplicada sobre una pieza mecánica (6889)

Viernes 20 de noviembre de 2020, por F_y_Q

Una fuerza que actúa sobre una pieza mecánica es \vec F = -5.00\ \vec i + 4.00\ \vec j\ (N) . El vector del origen al punto de aplicación de la fuerza es \vec r = -0.450\ \vec i + 0.150\ \vec j\ (m) :

a) Realiza un esquema que muestre los vectores \vec  r , \vec  F y el origen de coordenadas.

b) Usa la regla de la mano derecha para determinar la dirección del vector resultante.

c) Calcula el vector del momento producido por la fuerza y verifica que su dirección sea la misma que indicaste en el apartado anterior.


a) Puedes ver el esquema con más detalle si clicas sobre la miniatura:


b) Usando la mano derecha para el momento de la fuerza (\vec M = \vec r \times \vec F) se obtiene un vector perpendicular al plano formado por los vectores fuerza y posición, con sentido hacia dentro de ese plano.

c) Tienes que resolver el determinante:

\vec M = \vec r \times \vec F = \left| \begin{array}{ccc} \vec i & \vec j & \vec k \\\newline -0.45 & 0.15 & 0 \\\newline -5 & 4 & 0 \end{array} \right|= \fbox{\color[RGB]{192,0,0}{\bm{-1.05\ \vec k}}}

Portafolio

¿Un mensaje, un comentario?

moderación a priori

Este foro es moderado a priori: su contribución sólo aparecerá una vez validada por un/a administrador/a del sitio.

¿Quién es usted?
Su mensaje

Este formulario acepta atajos SPIP [->url] {{negrita}} {cursiva} <quote> <code> código HTML <q> <del> <ins>. Para separar párrafos, simplemente deje líneas vacías.

Añadir un documento