Masa, volumen y número de átomos de un alambre de cobre

, por F_y_Q

Un alambre de cobre de 10 cm de longitud y 0.25 cm de diámetro tiene una densidad de 8.60\ \textstyle{g\over cm^3}. Calcula:

a) La masa y el volumen del alambre.

b) El número de átomos de cobre que contiene.

Datos: Cu = 63.45 ; N_A = 6.022\cdot 10 ^{23}


SOLUCIÓN:

a) Necesitamos conocer el volumen del alambre para poder averiguar su masa. El volumen será el producto de su longitud por la sección:

V = L\cdot S = 10\ cm\cdot \pi\cdot (0,25)^2\ cm^2 = \fbox{\color{red}{\bf 1.96\ cm^3}}


Como conocemos la densidad del cobre, podemos despejar la masa:

\rho = \frac{m}{V}\ \to\ m = \rho\cdot V = 8.60\frac{g}{\cancel{cm^3}}\cdot 1.96\ \cancel{cm^3} = \fbox{\color{red}{\bf 16.86\ g}}


b) Convertimos en mol la masa de cobre y, usando el número de Avogadro, hacemos la conversión a átomos. Vamos a realizarlo en un único paso usando dos factores de conversión:

16.86\ \cancel{g}\ Cu\cdot \frac{1\ \cancel{mol}}{63.45\ \cancel{g}}\cdot \frac{6.022\cdot 10^{23}\ \acute{a}t}{1\ \cancel{mol}} = \fbox{\color{red}{\bm{1.60\cdot 10^{23}\ \acute{a}t\ Cu}}}