Fuerza total sobre una tercera masa debida a dos masas iguales (6099)

, por F_y_Q

Dos masas m _1 y m _2 de 3 kg cada una se colocan en los extremos de la base de un triángulo isósceles, distancia 4 cm entre sí. Calcula la magnitud de la fuerza resultante con la que las masas actúan sobre una masa m _3 de 5 kg colocada en el vértice superior del triángulo, siendo los ángulos de la base iguales a 30 ^o.

P.-S.

Al tratarse de un triángulo isósceles, si trazas una perpendicular desde el vértice superior cortará la base en su punto medio. Como conoces el ángulo entre la base y cada uno de los lados iguales entre sí, puedes determinar la distancia entre las masas de la base y la tercera masa que colocas en el vértice superior:

d = \frac{2\ cm}{cos\ 30^o} = 2.31\ cm\ \to\ \color[RGB]{0,112,192}{\bm{d = 2.31\cdot 10^{-2}\ m}}



Calculas la intensidad del campo gravitatorio en el vértice superior debido a las masas de la base:

g = G\cdot \frac{m}{d^2}= 6.67\cdot 10^{-11}\ \frac{N\cdot \cancel{m^2}}{kg\cancel{^2}}\cdot \frac{3\ \cancel{kg}}{(2.31\cdot 10^{-2})^2\ \cancel{m^2}} = \color[RGB]{0,112,192}{\bm{3.75\cdot 10^{-7}\ \frac{N}{kg}}}

No puedes olvidar que la intensidad del campo gravitatorio es una magnitud vectorial y tienes que expresar los vectores con sus componentes:



\left \vec g_1 = 3.75\cdot 10^{-7}\cdot cos\ 210^o\ \vec i + 3.75\cdot 10^{-7}\cdot sen\ 210^o\ \vec j = {\color[RGB]{0,112,192}{\bm{-3.25\cdot 10^{-7}\ \vec i - 1.87\cdot 10^{7}\ \vec j}}} \atop \vec g_2 = 3.75\cdot 10^{-7}\cdot cos\ (-30)^o\ \vec i + 3.75\cdot 10^{-7}\cdot sen\ (-30)^o\ \vec j = {\color[RGB]{0,112,192}{\bm{3.25\cdot 10^{-7}\ \vec i - 1.87\cdot 10^{7}\ \vec j}}} \right

El campo total se obtiene como suma de ambos campos:

\vec g_T = \vec g_1 + \vec g_2 = \color[RGB]{0,112,192}{\bm{-3.25\cdot 10^{-7}\ \vec j\ (\textstyle{N\over kg})}}

Para determinar la fuerza resultante sobre la masa m _3 solo tienes que multiplicar la intensidad calculada por el valor de la masa:

\vec F_T= \vec g_T\cdot m_3 = \fbox{\color[RGB]{192,0,0}{\bm{-1.62\cdot 10^{-6}\ \vec j\ (N)}}}