Choque elástico entre dos pelotas de softball (7324)

, por F_y_Q

Una pelota de softball de 0.220 kg de masa, que se mueve con una rapidez de 8.5 m/s, choca frontal y elásticamente con otra bola que está en reposo. Después de eso, la bola que llega rebota hacia atrás con una rapidez de 3.7 m/s. Calcula:

a) La velocidad de la bola inicialmente en reposo después de la colisión.

b) La masa de la bola inicialmente en reposo.

P.-S.

Al ser un choque elástico el que se produce, se deben conservar la cantidad de movimiento y la energía cinética del sistema. Si impones estas dos condiciones al problema, y tienes en cuenta que la velocidad final de la primera bola es negativa porque tiene sentido contrario a la inicial, obtienes las siguientes ecuaciones:

\left m_1\cdot v_{0_1} + m_2\cdot \cancelto{0}{v_{0_2}} = m_1\cdot v_{f_1} + m_2\cdot v_{f_2}\ \atop \dfrac{m_1}{2}\cdot v_{0_1}^2 + \dfrac{m_2}{2}\cdot \cancelto{0}{v_{0_2}^2} = \dfrac{m_1}{2}\cdot v_{f_1}^2 + \dfrac{m_2}{2}\cdot v_{f_2}^2 \right \}\ \to\ \left \color[RGB]{2,112,20}{\bm{m_1(v_{0_1} - v_{f_1}) = m_2\cdot v_{f_2} \atop m_1(v_{0_1}^2 - v_{f_1}^2) = m_2\cdot v_{f_2}^2}} \right \}

De la primera de las ecuaciones puedes despejar el valor de la velocidad final de la segunda bola y escribirla en función de su masa:

v_{f_2} = \frac{m_1}{m_2}(v_{0_1} - v_{f_1})\ \to\ v_{f_2} = \frac{0.220\ kg}{m_2}\cdot (8.5 + 3.7)\ \frac{m}{s} = \color[RGB]{0,112,192}{\bm{\frac{2.684}{m_2}\ \left(\frac{kg\cdot m}{s}\right)}}

b) Sustituyes el valor anterior en la segunda de las ecuaciones y resuelves:

0.220\ \cancel{kg}\ (8.5^2 - 3.7^2)\ \cancel{\frac{m^2}{s^2}} = \cancel{m_2}\cdot \frac{2.684^2}{m_2\cancel{^2}}\ \frac{kg\cancel{^2}\cdot \cancel{m^2}}{\cancel{s^2}}\ \to\ \fbox{\color[RGB]{192,0,0}{\bm{m_2 = 0.559\ kg}}}


a) El cálculo de la velocidad final de la segunda bola es inmediato:

v_{f_2} = \frac{2.684\ \frac{\cancel{kg}\cdot m}{s}}{0.559\ \cancel{kg}} = \fbox{\color[RGB]{192,0,0}{\bm{4.8\ \frac{m}{s}}}}


Puedes descargar el enunciado y la resolución del problema en formato EDICO si lo necesitas.

TogelhokSitus Slot TogelhokWild Bounty Showdownslot new memberLvonline LoginScatter HitamDaftar LvonlineSlot Gacor Hari IniLvonlineScatter HitamKoi GateTOGELHOKToto MacauLucky NekoMahjong Wins 2LvoslotDragon Hatch 2Slot GacorlvonlinetogelhokSBOTOP