Colisión elástica de cuerpos de masas distintas (5042)

, por F_y_Q

En la figura se muestra el resultado de un choque entre dos objetos de masas distintas.

a) Calcula la velocidad v _2 de la masa mayor después del choque y el ángulo \theta _2.

b) Demuestra que este choque es elástico.

P.-S.

En la colisión se ha de conservar la cantidad de movimiento. Esta condición te dará la relación entre la velocidad v _2 y la velocidad inicial del cuerpo de menor masa v _0. Es importante que tengas en cuenta que la velocidad es vectorial y consideres las componentes de las velocidades:

3mv_0\ \vec i  = \sqrt{5}mv_0\cdot cos\ \theta_1\ \vec i + \sqrt{5}mv_0\cdot sen\ \theta_1\ \vec j + 2mv_2\cdot cos\ \theta_2\ \vec i - 2mv_2\cdot sen\ \theta_2\ \vec j

Sabes que tg\ \theta _1 = 2, lo que quiere decir que, haciendo la función inversa a la tangente, el ángulo es \theta_1 = 63.4^oC

Analizas la ecuación componente a componente.

Horizontal:

3\cdot \cancel{m}\cdot v_0 = \sqrt{5}\cdot \cancel{m}\cdot v_0\cdot cos\ \theta_1 + 2\cdot \cancel{m}\cdot v_2\cdot cos\ \theta_2
3v_0 = v_0 + 2v_2\cdot cos\ \theta_2\ \to\ \color[RGB]{2,112,20}{\bm{v_0 = v_2\cdot cos\ \theta_2}}

Vertical:

0 = \sqrt{5}\cdot \cancel{m}\cdot v_0\cdot\ sen\ 63.4 - 2\cdot \cancel{m}\cdot v_2\cdot sen\ \theta_2\ \to\ \color[RGB]{2,112,20}{\bm{v_0 = v_2\cdot sen\ \theta_2}}

Como puedes ver, la única manera de que v _0 cumpla ambas condiciones es que cos\ \theta_2 = sen\ \theta_2\ \to\ \fbox{\color[RGB]{192,0,0}{\bm{\theta_2 = 45^oC}}}

Ahora puedes escribir el valor de la velocidad v _2 en función de la velocidad inicial:

v_0 = v_2\cdot cos\ 45\ \to\ \fbox{\color[RGB]{192,0,0}{\bm{v_2 = \sqrt{2}v_0}}}


b) Si es un choque elástico se tiene que conservar la energía cinética del sistema:

\frac{\cancel{m}}{2}\left(\frac{\sqrt{2}\cdot 3\cdot v_2}{2}\right)^2 = \frac{\cancel{m}}{2}\left(\frac{\sqrt{5}\cdot \sqrt{2}\cdot v_2}{2}\right)^2 + \frac{\cancel{2m}}{\cancel{2}}v_2^2\ \to\ \fbox{\color[RGB]{192,0,0}{\bm{4.5v_2^2 = 2.5v_2^2 + 2v_2^2}}}

Se cumple la igualdad con lo que el choque es elástico.

TogelhokSitus Slot TogelhokWild Bounty Showdownslot new memberLvonline LoginScatter HitamDaftar LvonlineSlot Gacor Hari IniLvonlineScatter HitamKoi GateTOGELHOKToto MacauLucky NekoMahjong Wins 2LvoslotDragon Hatch 2Slot GacorlvonlinetogelhokSBOTOP