Energía cinética de un electrón que entra en un campo magnético (4795)

, por F_y_Q

Cuando un electrón entra perpendicularmente a las líneas de fuerza de un campo magnético de 21 mT, la fuerza magnética lo hace girar un radio de 7 mm. Determina la energía cinética que posee dicho electrón.
Datos: m_e = 9.1\cdot 10^{-31}\ kg ; q_e = 1.6\cdot 10^{-19}\ C.

P.-S.

En la situación descrita, el electrón será acelerado en un plano perpendicular al plano formado por la velocidad de entrada del electrón y el vector inducción magnética del campo magnético. Se ha de cumplir que la fuerza magnética sobre el electrón es igual a la fuerza centrípeta sobre el electrón:

\vec F_M  = \vec F_{ct}\ \to\ q\cdot (\vec v\ \times \vec B) = m\cdot \frac{v^2}{R}

Si escribes en la expresión para el módulo de cada magnitud tienes:

q\cdot v\cdot B\cdot sen\ 90 = \frac{m\cdot v^2}{R}

Se cumple que sen\ 90 = 1 y no conoces el valor de la velocidad con la que entra el electrón. Eso hace que tengas que calcular primero esa velocidad y luego la energía cinética:

qvB = \frac{mv^2}{2}\ \to\ \color[RGB]{2,112,20}{\bm{\frac{qBR}{m} = v}}

Sustituyes los valores y calculas:

v = \frac{1.6\cdot 10^{-19}\ C\cdot 2.1\cdot 10^{-2}\ T\cdot 7\cdot 10^{-3}\ m}{9.1\cdot 10^{-31}\ kg} = \color[RGB]{0,112,192}{\bm{2.58\cdot 10^7\frac{m}{s}}}

Ahora puedes hacer el cálculo de la energía cinética:

E_C = \frac{1}{2}m\cdot v^2 = \frac{9.1\cdot 10^{-31}\ kg\cdot (2.58\cdot 10^7)^2\ m^2\cdot s^{-2}}{2} = \fbox{\color[RGB]{192,0,0}{\bm{3.03\cdot 10^{-16}\ J}}}