Fórmula molecular de un gas sabiendo su velocidad de difusión (5053)

, por F_y_Q

En un pantano se forma un gas, constituido por átomos de carbono e hidrógeno, por acción metabólica de algunas bacterias anaeróbicas. Una muestra pura de este gas atraviesa una barrera porosa en 95 segundos. Un volumen igual de bromo gaseoso, en idénticas condiciones de temperatura y presión, atraviesa la misma barrera porosa en 5 minutos.

Determina la fórmula del gas en cuestión, considerando que la combinación de átomos se da en la siguiente relación \ce{C_{n}H_{2n+2}} .

P.-S.

A partir de la ley de Graham, que relaciona la velocidad de difusión de dos gases con sus masas moleculares, puedes calcular la masa molecular del gas del que conoces la fórmula general:

\color[RGB]{2,112,20}{\bm{\frac{v_{Br_2}}{v_{gas}}  = \sqrt{\frac{M_{gas}}{M_{Br_2}}}}

La masa molecular del bromo es:

\ce{Br2}: 2\cdot 80 = \color[RGB]{0,112,192}{\bm{160\ \frac{g}{mol}}}

Despejas la masa molar del gas y calculas:

\frac{v^2_{Br_2}}{v^2_{gas}} = \frac{M_{gas}}{M_{Br_2}}\ \to\ M_{gas} = \frac{v^2_{Br_2}\cdot M_{Br_2}}{v^2_{gas}} = \frac{300^2\ \cancel{s^2}\cdot 160\ \frac{g}{mol}}{95^2\ \cancel{s^2}}= \color[RGB]{0,112,192}{\bm{1\ 595\ \frac{g}{mol}}}

Sustituyes por las masas atómicas del carbono y del hidrógeno en la fórmula general del gas y calculas el valor de «n»:

12n + 1(2n + 2) = 1\ 595\ \to\ 14n= 1\ 593\ \to\ \color[RGB]{2,122,20}{\bf n = 114}

(He redondeado los resultados para poder obtener un número entero). La fórmula molecular del gas será \fbox{\color[RGB]{192,0,0}{\textbf{\ce{C114H230}}}}.


Descarga el enunciado y la resolución del problema en formato EDICO si lo necesitas.