Sistema de masas enlazadas sobre el que se aplica una fuerza (7665)

, por F_y_Q

El siguiente sistema, sin fricción, está constituido por tres masas iguales de valor 2 kg. La masa m _2 está sometida a una fuerza de 100 N que forma un ángulo de 30 ^o con la horizontal.

Calcula:

a) La tensión de la cuerda y la aceleración.

b) Las fuerzas de acción y reacción entre las masas m _1 y m _2.

c) Determina el trabajo hecho por la fuerza F en 5 s si el sistema parte del reposo.

P.-S.

Para que la fuerza F coincida con el sistema de referencia es bueno descomponerla en las componentes F _x y F _y:

\left F_x = F\cdot sen\ 30 = 100\ N\cdot 0.5\ \to\ {\color[RGB]{0,112,192}{\bm{F_x = 50\ N}}} \atop F_y = F\cdot cos\ 30 = 100\ N\cdot 0.866\ \to\ {\color[RGB]{0,112,192}{\bm{F_y = 86.6\ N}} \right \}

Es muy conveniente dibujar las fuerzas presentes en el sistema que vas a tener que considerar. Recuerda que no hay rozamiento. El esquema podría ser este y lo puedes ver con más detalle si clicas en la miniatura:


a) (Considero positivas las fuerzas que apuntan hacia la izquierda). Si aplicas la segunda ley de Newton:

F_x - \cancel{T^{\prime}} + \cancel{T} - p_3 = (m_2 + m_3)\cdot a\ \to\ \color[RGB]{2,112,20}{\bm{a = \frac{F_x - p_3}{2m}}}

La aceleración la obtienes al sustituir y calcular:

a = \frac{50\ N - 2\ kg\cdot 9.8\ \frac{m}{s^2}}{4\ kg} = \fbox{\color[RGB]{192,0,0}{\bm{7.6\ \frac{m}{s^2}}}}


La tensión de la cuerda la calculas aislando el cuerpo 3:

T - p_3 = m_3\cdot a\ \to\ T = m(a + g) = 2\ kg\cdot (7.6 + 9.8)\ \frac{m}{s^2} = \fbox{\color[RGB]{192,0,0}{\bf 34.8\ N}}


b) La fuerza de acción y reacción entre los cuerpos 1 y 2 serán de la misma intensidad y sentido contrario. El módulo de ambas es la fuerza neta que sufre el cuerpo 2, es decir:

F = F_x - T = (50 - 34.8)\ N\ \to\ \fbox{\color[RGB]{192,0,0}{\bf F = 15.2\ N}}


c) Lo primero que debes conocer es la distancia que recorre el sistema en los 5 s:

d = \cancelto{0}{v_0}\cdot t + \frac{a}{2}\cdot t^2\ \to\ d = \frac{7.6}{2}\ \frac{m}{\cancel{s^2}}\cdot 5^2\ \cancel{s^2} = \color[RGB]{0,112,192}{\bf 95\ m}

El trabajo es el producto de la fuerza por el desplazamiento que provoca:

W = F\cdot d\cdot \cancelto{1}{cos\ 0} = 50\ N\cdot 95\ m = \fbox{\color[RGB]{192,0,0}{\bf 4\ 750\ J}}

lvonlineLvonline SlottogelhokTogelhokScatter HitamSlotDaftar LvonlineMahjong Wins 2Scatter HitamSlot QrisLvoslotWild Bounty ShowdownTOGELHOKToto MacauMahjong SlotCapcut88Slot DanaSlot ZeusSlot BonusNoLimit CityTogel OnlineSlot777Scatter Hitam MahjongSlot ThailandSlot Luar NegeriSitus Slot ThailandSlot VietnamSlot KambojaSBOBET LoginSlot77Slot Thailand GacorScatter Hitam Mahjong WaysCMD Sports
Bebas Bermain Game Mahjong Ways, Capcut88 Memberikan JackpotMahjong Ways Scatter Hitam Menjadi TrendingBom Meledak Di Sweet Bonanza x1000Mahjong Scatter Hitam Pola AmpuhKemenangan Mahjong Ways, Siapkan Rekeningmu Pasti PecahAnime Popeye Masuk Domain Mahjong Ways 2 Publik Di 2025Petir Rasengan Zeus Pecah Modal RecehPrediksi Tren Pola Scatter Hitam 2025Tips Investasi Bagi Pemula Siap-Siap Cuan Saldo Berserak Memuncak Scatter Hitam Di 2025Viral Guru Di Olympus Jalan Kaki Olympus - Olympus 1000 Usai Memberikan Maxwin