Frecuencia de oscilación de un cuerpo colgado de un resorte (7523)

, por F_y_Q

Un cuerpo de 300 g se encuentra unido al techo a través de un muelle. El peso del cuerpo hace que el muelle se deforme 4 cm, calcula la frecuencia de oscilación del cuerpo cuando se desplaza de su posición de equilibrio.

P.-S.

Puedes escribir la constante de recuperación del muelle en función de los datos que te dan en el enunciado si aplicas la ley de Hooke:

\left F = m\cdot g \atop F = k\cdot \Delta x \right \}\ \to\ \color[RGB]{2,112,20}{\bm{k = \frac{m\cdot g}{\Delta x}}}

La frecuencia de oscilación es función de la constante de recuperación y de la masa, por lo que puedes sustituir en ella:

\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{\frac{\cancel{m}\cdot g}{\Delta x}}{\cancel{m}}}\ \to\ \color[RGB]{2,112,20}{\bm{\omega = \sqrt{\frac{g}{\Delta x}}}}

Ahora puedes calcular la frecuencia de forma simple:

\omega = \sqrt{\frac{9.8\ \frac{\cancel{m}}{s^2}}{0.04\ \cancel{m}}} = \fbox{\color[RGB]{192,0,0}{\bm{15.7\ s^{-1}}}}


Descarga el enunciado y la resolución del problema en formato EDICO si lo necesitas.

TogelhokSitus Slot TogelhokWild Bounty Showdownslot new memberLvonline LoginScatter HitamDaftar LvonlineSlot Gacor Hari IniLvonlineScatter HitamKoi GateTOGELHOKToto MacauLucky NekoMahjong Wins 2LvoslotDragon Hatch 2Slot GacorlvonlinetogelhokSBOTOP