Molalidad y porcentaje en masa de una solución saturada de urea

, por F_y_Q

A 20^oC la solubilidad de la urea CO(NH_2)_2 es de \textstyle{15,8\ g\ S\over 100\ cm^3\ d}. Averigua:

a) La molalidad de la solución saturada, sabiendo que la densidad del etanol a 20^oC es 0,789\ \textstyle{g\over cm^3}.

b) El porcentaje en peso \left(\textstyle{g\ S\over g\ d}\right) y el porcentaje en peso \left(\textstyle{g\ S\over g\ D}\right).

Masas atómicas: H = 1 ; C = 12 ; N = 14 ; O = 16.

(Recuerda que S es soluto, d es disolvente y D es disolución).


SOLUCIÓN:

En pirmer lugar calculamos la masa molecular de la urea:
CO(NH_2)_2:\ 1\cdot 12 + 1\cdot 16 + (14 + 1)\cdot 2 = 60\ \textstyle{g\over mol}
a) Para calcular la molalidad necesitamos conocer los moles de soluto y la masa de disolvente:
15,8\ \cancel{g}\ CO(NH_2)_2\cdot \frac{1\ mol}{60\ \cancel{g}} = 0,263\ mol\ CO(NH_2)_2
100 \ \cancel{cm^3}\ etanol\cdot \frac{0,789\ g}{1\ \cancel{cm^3}} = 78,9\ g\ etanol
La molalidad se define como los moles de soluto que hay en un kilogramo de disolvente, es decir, en mil gramos:

m = \frac{0,263\ mol}{78,9\ \cancel{g}}\cdot \frac{10^3\ \cancel{g}}{1\ kg} = \bf 3,33\ \frac{mol}{kg}


Como sabemos la masa de soluto y la de disolvente en la disolución, el primer porcentaje es muy rápido:

\%\ \left(\textstyle{g\ S\over g\ d}\right) = \frac{15,8\ \cancel{g}}{78,9\ \cancel{g}}\cdot 100 = \bf 20\%


El segundo porcentaje es análogo al cálculo del primero pero teniendo en cuenta que la masa de la disolución es la suma de la masa del soluto y la del disolvente:

\%\ \left(\textstyle{g\ S\over g\ D}\right) = \frac{15,8\ \cancel{g}}{(15,8 + 78,9)\ \cancel{g}}\cdot 100 = \bf 16,7\%